De Novo sphingolipid synthesis is essential for Salmonella-induced autophagy and human beta-defensin 2 expression in intestinal epithelial cells.

نویسنده

  • Fu-Chen Huang
چکیده

BACKGROUND Sphingolipids are important for innate immune response to eliminate infected pathogens and involved in autophagy. On the other hand, nucleotide-binding oligomerization domain-containing protein 2 (NOD2) served as an intracellular pattern recognition receptor to enhance host defense by inducing autophagy and the production of antimicrobial peptides, such as human beta-defensin-2 (hBD-2). However, the role of sphingolipids in Salmonella-induced autophagy and hBD-2 response in intestinal epithelial cells has not been previously elucidated. METHODS Salmonella typhimurium wild-type strain SL1344 was used to infect SW480, an intestinal epithelial cell. hBD-2 and interleukin-8 (IL-8) mRNA expressions were assessed in SW480 cells using RT-PCR, and intracellular signaling pathways and autophagy protein expression were analyzed by Western blot in SW480 cells in the presence or absence of inhibitors or transfected with siRNA. RESULTS We demonstrated that inhibition of de novo sphingolipid synthesis repressed the membrane recruitment of NOD2 and autophagy-related protein 16-like 1 (Atg16L1), suppressed Salmonella-induced autophagic protein LC3-II expression, and reduced NOD2-mediated hBD-2 response in Salmonella-infected SW480 cells. Contrasting to the utilization of membrane cholesterol on maintenance of Salmonella-containing vacuoles and anti-inflammation by Salmonella, sphingolipids act on epithelial defense against the invasive pathogen. CONCLUSIONS Our results offer mechanistic insights on the role of de novo sphingolipid synthesis in the innate immunity of intestinal epithelial cells to Salmonella infection. The pharmaceuticals enhancing or diet enriched with sphingolipids may induce the dual anti-bacterial mechanisms. The role of de novo sphingolipid synthesis on inflammatory bowel disease is deserved to be further investigated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Critical Role of Membrane Cholesterol in Salmonella-Induced Autophagy in Intestinal Epithelial Cells

It was previously observed that plasma membrane cholesterol plays a critical role in the Salmonella-induced phosphatidylinositol 3-kinase-dependent (PI3K)-dependent anti-inflammatory response in intestinal epithelial cells (IECs). The PI3K/Akt pathway is associated with autophagy which has emerged as a critical mechanism of host defense against several intracellular bacterial pathogens. Plasma ...

متن کامل

Beta-Defensin-2 and Beta-Defensin-3 Reduce Intestinal Damage Caused by Salmonella typhimurium Modulating the Expression of Cytokines and Enhancing the Probiotic Activity of Enterococcus faecium

The intestinal microbiota is a major factor in human health and disease. This microbial community includes autochthonous (permanent inhabitants) and allochthonous (transient inhabitants) microorganisms that contribute to maintaining the integrity of the intestinal wall, modulating responses to pathogenic noxae and representing a key factor in the maturation of the immune system. If this healthy...

متن کامل

Salidroside regulates the expressions of IL-6 and defensins in LPS-activated intestinal epithelial cells through NF-κB/MAPK and STAT3 pathways

Objective(s): To reveal the detailed mechanism underlying the functions of salidroside on the inflammation of intestinal epithelial cells during IBD.Materials and Methods: Quantitative real-time PCR was employed to assess the expression of IL-6, IL-10, and α-defensins 5 and 6. ELISA assay was performed to measure the secretion of IL-6 and IL-10. MTT assay was used to determine the cell viabilit...

متن کامل

Beta-defensin-2 expression is regulated by TLR signaling in intestinal epithelial cells.

The intestinal epithelium serves as a barrier to the intestinal flora. In response to pathogens, intestinal epithelial cells (IEC) secrete proinflammatory cytokines. To aid in defense against bacteria, IEC also secrete antimicrobial peptides, termed defensins. The aim of our studies was to understand the role of TLR signaling in regulation of beta-defensin expression by IEC. The effect of LPS a...

متن کامل

Evaluation of ATG7 and Light Chain 3 (LC3) Autophagy Genes Expression in Newly Diagnosed AML Patients

Evaluation of ATG7 and LC3 Autophagy Genes Expression in Newly Diagnosed AML patients Background and aim: Autophagy, known as cell death type II, is a housekeeping pathway that currently has been worked on in matters of tumorigenesis and leukemogenesis. Therefore, in this study expression levels of ATG7 and LC3 as two key genes are targeted in AML patients. Material and method: This...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Gut pathogens

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016